4.5 Article

Region specific increases in oxidative stress and superoxide dismutase in the hippocampus of diabetic rats subjected to stress

期刊

NEUROSCIENCE
卷 121, 期 1, 页码 133-140

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(03)00343-9

关键词

streptozotocin; 4-hydroxy-2-nonenal; malondialdehyde; radioimmunocytochemistry; glucocorticoids; reactive oxygen species

资金

  1. NIMH NIH HHS [MH42156] Funding Source: Medline

向作者/读者索取更多资源

Oxidative stress and modulation of anti-oxidant enzymes may contribute to the deleterious consequences of diabetes mellitus and to the effects of chronic (i.e. 21 day) stress in the CNS. We therefore compared the effects of short- and long-term exposure to diabetes-induced hyperglycemia, restraint stress and the combined effects of restraint stress and diabetes upon parameters of oxidative stress in the rat hippocampus. Whereas 7 days of restraint stress or hyperglycemia, or the combination, produced similar increases in oxidative stress markers 4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA) throughout the hippocampus, 21 days of stress or hyperglycemia did not increase these markers in the dentate gyrus. In contrast, Ammon's horn still showed elevated levels of these lipid peroxidation products, especially in diabetic rats subjected to 21 days of restraint stress. The expression of two anti-oxidant enzymes, copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese SOD, was also differentially regulated by stress and hyperglycemia in a time- and region-specific manner in the rat hippocampus. Although long-term stress decreased both SOD isoforms, diabetes increased Cu/Zn-SOD expression in DG with or without 21 days of repeated stress. These increases may account for the finding that protein-conjugated HNE and MDA levels returned to control levels between 7 days and 21 days of hyperglycemia or the combination of diabetes and stress. These results suggest that while other anti-oxidant pathways may account for decreases in oxidative stress in the long-term stress paradigm, increases in Cu/Zn-SOD expression may contribute to the region-specific attenuation of oxidative stress in the diabetic rat hippocampus. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据