4.5 Article

Calpain mediates progressive plasma membrane permeability and proteolysis of cytoskeleton-associated paxillin, talin, and vinculin during renal cell death

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.102.043406

关键词

-

资金

  1. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [R01ES009129] Funding Source: NIH RePORTER
  2. NIEHS NIH HHS [ES-09129] Funding Source: Medline

向作者/读者索取更多资源

The goal of the present study was to determine the role of calpain in changes in plasma membrane permeability and cytoskeleton-associated paxillin, vinculin, talin, and alpha-actinin levels during acute renal cell death. The mitochondrial inhibitor antimycin A or hypoxia produced graded plasma membrane permeability in renal proximal tubules (RPTs), first allowing propidium iodide (PI, molecular mass 668 Da) influx and then lactate dehydrogenase (LDH, molecular mass 130 kDa) release. Cytoskeleton-associated paxillin levels decreased concomitantly with PI influx and before LDH release, whereas cytoskeleton-associated talin and vinculin levels decreased concomitantly with LDH release. Cytoskeleton-associated alpha-actinin levels did not change during antimycin A exposure or hypoxia. Purified mu-calpain cleaved paxillin, talin, vinculin, but not alpha-actinin. The dissimilar calpain inhibitors 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) or chloroacetic acid N'-[6,7-dichloro-4-phenyl)-3-oxo-3,4-dihydroquinoxalin-2-yl] hydrazide (SJA7029) preserved cytoskeleton-associated paxillin, talin, and vinculin levels and prevented PI influx and LDH release in antimycin A-exposed or hypoxic RPTs. These results suggest that calpain mediates increased plasma membrane permeability and hydrolysis of cytoskeleton-associated paxillin, vinculin, and talin during renal cell death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据