4.5 Article

Quantification and localization of kainic acid-induced neurotoxicity employing a new biomarker of cell death: Cleaved microtubule-associated protein-tau (C-tau)

期刊

NEUROSCIENCE
卷 121, 期 2, 页码 399-409

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(03)00459-7

关键词

kainic acid; neurotoxicity; C-tau; ELISA; immunohistochemistry; neurodegeneration

资金

  1. NIDA NIH HHS [DA13300, DA07427] Funding Source: Medline
  2. NATIONAL INSTITUTE ON DRUG ABUSE [R43DA013300, R44DA013300, R01DA007427] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Previous studies of neuronal degeneration induced by the neurotoxin, kainic acid, employed silver stain techniques that are non-quantitative or ELISA measurement of the non-neuronal protein, glial fibrillary acidic protein. As previous studies employed biomarkers that were either non-quantitative or non-neuronal, the present study employed a new neuronally localized biomaker of neuronal damage, cleaved microtubule-associated protein (MAP)-tau (C-tau). The time course of kainate neurotoxicity was quantitatively determined in several brain regions in the present study employing a C-tau specific ELISA. Differences in ELISA determined regional brain levels of C-tau were compared with the density of somatodendritic C-tau labeling qualitatively determined in immunohistochemical anatomical mapping studies of kainic acid-treated animals. Immunoblot studies revealed that the C-tau antibodies employed in the present study were highly specific for proteolytic cleaved C-tau. Immunolabeling of 45 kD-50 kD C-tau proteins was observed only in brain samples from kainic acid-treated but not vehicle-treated rats. Time course studies revealed that C-tau levels determined by ELISA were maximal 3 days after kainic acid with C-tau levels increasing 26-fold in hippocampus, 16-fold in cortex and four-fold in both striatum and hypothalamus. These statistical differences in maximal C-tau levels observed in the ELISA studies were similar to differences qualitatively observed in C-tau immunohistochemical studies. C-tau immunohistochemistry revealed extensive damage in hippocampal regions CA1 and 3, moderate damage in several cortical regions and mild damage in striatum and hypothalamus. Similar cleavage of rat MAP-tau to C-tau has been reported after neuronal degeneration induced by neurotoxic doses of methamphetamine and neuronal degeneration resulting from bacterial meningitis. In humans, C-tau proteolysis has been demonstrated to be a reliable biomarker of neuronal damage in traumatic brain injury and stroke where cerebrospinal C-tau levels are correlated with patient clinical outcome. These data suggest that C-tau proteolysis may prove a reliable species independent biomarker of neuronal degeneration regardless of source of injury. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据