4.7 Article

Dilute granular flow around an immersed cylinder

期刊

PHYSICS OF FLUIDS
卷 15, 期 11, 页码 3318-3330

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1608937

关键词

-

向作者/读者索取更多资源

In this paper we investigate a two-dimensional dilute granular flow around an immersed cylinder using discrete element computer simulations. Simulation measurements of the drag force acting on the cylinder, F-d, are expressed in terms of a dimensionless drag coefficient, C-d=F-d/[1/2rhonu(infinity)U(infinity)(2)(D+d)], where rho is the upstream particle mass density, nu(infinity) is the upstream solid fraction, U-infinity is the upstream velocity, and (D+d) is the sum of the cylinder diameter, D, and surrounding particle diameter, d. The drag coefficient increases rapidly with decreasing Mach number for subsonic Mach numbers, but remains insensitive to Mach number for supersonic values. The drag coefficient is also a strong function of the flow Knudsen number, with the drag coefficient increasing with increasing Knudsen number and approaching an asymptotic value for very large Knudsen numbers. The drag coefficient decreases with decreasing normal coefficient of restitution and is relatively insensitive to the friction coefficient. Bow shock structures and expansion fans are also observed in the simulations and are compared to similar structures observed in compressible gas flows. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据