4.5 Article

Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li

期刊

SOLID STATE IONICS
卷 156, 期 1-2, 页码 141-153

出版社

ELSEVIER
DOI: 10.1016/S0167-2738(02)00582-9

关键词

composite polymer electrolyte; XRD; SEM; DSC; Li-7-NMR; conductivity

向作者/读者索取更多资源

Novel composite polymer electrolytes comprise of hexagonal array of mesoporous structured MCM-41, and poly(ethylene oxide) (PEO)/Li show that the conductivity and mechanical properties are improved simultaneously. The comparison of small angle X-ray diffraction (XRD) of mesoporous MCM-41 and blended films of PEO:Li/MCM-41 shows that the nano-porous SiO2 channels were not destroyed in PEO/Li. Solid-state Li-7 NMR spectra identified two major lithium species attributed to the Li+ ions associated with PEO, and intercalation or penetration of polymer and Li+ ions both within and outside the channels of mesoporous MCM-41. The scanning electron microscopy (SEM) photographs indicated that the electrolytes are miscible and homogeneous up to 8 wt.% of MCM-41, and an optimal conductivity is reached at this composition. However, at higher weight ratios (>10 wt.%), the Li/MCM-41-rich domain developed, and the conductivity decreased with increasing mesoporous material. Apart from the fundamental random diffusion within the amorphous PEO, additional conducting mechanism is established by replacing the nearby vacancy (hole) with lithium ion on MCM-41 surface, which bears lower activation energy Ea. As a result, enhancement of conductivity is observed when the polymer and oxide are well miscible. This additional mechanism is absent in the case of spherical fillers such as TiO2, Al2O3 or SiO2 nano-particles in PEO-based electrolytes. (C) 2003 Elsevier Science B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据