4.5 Article

Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells

期刊

JOURNAL OF CELL SCIENCE
卷 116, 期 1, 页码 81-88

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jcs.00201

关键词

Arabidopsis; calcium; channel; free oxygen radical; plasma membrane; potassium

向作者/读者索取更多资源

Free oxygen radicals are an irrefutable component of life, underlying important biochemical and physiological phenomena in animals. Here it is shown that free oxygen radicals activate plasma membrane Ca2+- and K+-permeable conductances in Arabidopsis root cell protoplasts, mediating Ca2+ influx and K+ efflux, respectively. Free oxygen radicals generate increases in cytosolic Ca2+ mediated by a novel population of nonselective cation channels that differ in selectivity and pharmacology from those involved in toxic Na+ influx. Analysis of the free oxygen radical-activated K+ conductance showed its similarity to the Arabidopsis root K+ outward rectifier. Significantly larger channel activation was found in cells responsible for perceiving environmental signals and undergoing elongation. Quenching root free oxygen radicals inhibited root elongation, confirming the role of radical-activated Ca2+ influx in cell growth. Net free oxygen radical-stimulated Ca2+ influx and K+ efflux were observed in root cells of monocots, dicots, C3 and C4 plants, suggesting conserved mechanisms and functions. In conclusion, two functions for free oxygen radical cation channel activation are proposed: initialization/amplification of stress signals and control of cell elongation in root growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据