4.3 Article

Novel Cell- and Tissue-Based Assays for Detecting Misfolded and Aggregated Protein Accumulation Within Aggresomes and Inclusion Bodies

期刊

CELL BIOCHEMISTRY AND BIOPHYSICS
卷 60, 期 3, 页码 173-185

出版社

HUMANA PRESS INC
DOI: 10.1007/s12013-010-9138-4

关键词

Aggresome; Inclusion bodies; Proteasome inhibitor; Ubiquitin-proteasome system; Misfolded proteins; p62 protein; LC3; Autophagy; Alzheimer's disease; Protein homeostasis; Proteostasis

向作者/读者索取更多资源

Aggresomes and related inclusion bodies appear to serve as storage depots for misfolded and aggregated proteins within cells, which can potentially be degraded by the autophagy pathway. A homogenous fluorescence-based assay was devised to detect aggregated proteins inside aggresomes and inclusion bodies within an authentic cellular context. The assay employs a novel red fluorescent molecular rotor dye, which is essentially nonfluorescent until it binds to structural features associated with the aggregated protein cargo. Aggresomes and related structures were generated within cultured cells using various potent, cell permeable, proteasome inhibitors: MG-132, lactacystin, epoxomicin and bortezomib, and then selectively detected with the fluorescent probe. Employing the probe in combination with various fluorescein-labeled primary antibodies facilitated co-localization of key components of the autophagy system (ubiquitin, p62, and LC3) with aggregated protein cargo by fluorescence microscopy. Furthermore, cytoplasmic aggregates were highlighted in SK-N-SH human neuroblastoma cells incubated with exogenously supplied amyloid beta peptide 1-42. SMER28, a small molecule modulator of autophagy acting via an mTOR-independent mechanism, prevented the accumulation of amyloid beta peptide within these cells. The described assay allows assessment of the effects of protein aggregation directly in cells, without resorting to the use of non-physiological protein mutations or genetically engineered cell lines. With minor modification, the assay was also adapted to the analysis of frozen or formalin-fixed, paraffin-embedded tissue sections, with demonstration of co-localization of aggregated cargo with beta-amyloid and tau proteins in brain tissue sections from Alzheimer's disease patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据