4.8 Article

Interfacial heat flow in carbon nanotube suspensions

期刊

NATURE MATERIALS
卷 2, 期 11, 页码 731-734

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat996

关键词

-

向作者/读者索取更多资源

T he enormous amount of basic research into carbon nanotubes has sparked interest in the potential applications of these novel materials. One promising use of carbon nanotubes is as fillers in a composite material to improve mechanical behaviour(1,2), electrical transport(3,4) and thermal transport(5,6). For composite materials with high thermal conductivity, the thermal conductance across the nanotube-matrix interface is of particular interest. Here we use picosecond transient absorption to measure the interface thermal conductance (G) of carbon nanotubes suspended in surfactant micelles in water. Classical molecular dynamics simulations of heat transfer from a carbon nanotube to a model hydrocarbon liquid are in agreement with experiment. Our findings indicate that heat transport in a nanotube composite material will be limited by the exceptionally small interface thermal conductance (Gapproximate to12 MW m(-2) K-1) and that the thermal conductivity of the composite will be much lower than the value estimated from the intrinsic thermal conductivity of the nanotubes and their volume fraction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据