4.8 Article

Nanoscale effects leading to non-Einstein-like decrease in viscosity

期刊

NATURE MATERIALS
卷 2, 期 11, 页码 762-766

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat999

关键词

-

向作者/读者索取更多资源

Nanoparticles have been shown to influence mechanical properties; however, transport properties such as viscosity have not been adequately studied. This might be due to the common observation that particle addition to liquids produces an increase in viscosity, even in polymeric liquids, as predicted by Einstein nearly a century ago. But confinement and surface effects provided by nanoparticles have been shown to produce conformational changes to polymer molecules, so it is expected that nanoparticles will affect the macroscopic viscosity. To minimize extraneous enthalpic or other effects, we blended organic nanoparticles, synthesized by intramolecular crosslinking of single polystyrene chains, with linear polystyrene macromolecules. Remarkably, the blend viscosity was found to decrease and scale with the change in free volume introduced by the nanoparticles and not with the decrease in entanglement. Indeed, the entanglements did not seem to be affected at all, suggesting unusual polymer dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据