4.3 Article

Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins

期刊

BIOTECHNOLOGY PROGRESS
卷 19, 期 1, 页码 185-192

出版社

WILEY
DOI: 10.1021/bp025598o

关键词

-

向作者/读者索取更多资源

Paucimannose or oligomannose structures are usually attached to glycoproteins produced by insect cells, while mammalian glycoproteins usually have complex glycans. The lack of complex glycosylation has limited the use of the insect cell baculovirus expression vector system (BEVS), despite its high productivity and versatility. The availability of cell lines capable of complex glycosylation can overcome such a problem and potentially increase the utility of BEVS. In this work the capability of two novel cell lines, one from Pseudaletia unipuncta (A7S) and one from Danaus plexippus (DpN1), to produce and glycosylate a recombinant protein (secreted human placental alkaline phosphatase, SeAP) was assessed. SeAP produced by Tn5B1-4 cells at a low passage number (<200) was utilized for comparison. The optimal conditions for the production of SeAP by DpN1 cells were defined, and the glycosylation profiles of SeAP produced by the cell lines were quantitatively determined. Both the A7S and the DpN1 cells produced lower concentrations of SeAP than the Tn5B1-4 cells. Less than 5% of the glycans attached to SeAP produced by the Tn5B 1-4 cells had complex forms. Glycans attached to SeAP from A7S cells contained 4% hybrid and 8% complex forms. Galactosylated biantennary structures were identified. Glycans attached to SeAP produced by the DpNl cell line had 6% hybrid and 26% complex forms. Of the complex forms in SeAP from DpN1, 13% were identified as sialylated glycans. The galactosyl-transferase activity of the three cell lines was measured and correlated to their ability to produce complex forms. Even though neither novel cell line produced as much recombinant protein as the Tn5B1-4 cells, the glycosylation of SeAP expressed by both cell lines was more complete. These novel cell lines represent interesting alternatives for the production of complex glycosylated proteins utilizing the BEVS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据