3.8 Article

Chemoinformatic analysis of a supertargeted combinatorial library of styryl molecules

向作者/读者索取更多资源

Styryl dyes are fluorescent, lipophilic cations that have been used as specific labeling probes of mitochondria in living cells. For specific applications such as epifluorescence microscopy or flow cytometry, it is often desirable to synthesize fluorescent derivatives with optimized excitation, emission, and localization properties. Here, we present a chemoinformatic strategy suitable for multiparameter analysis of a combinatorial library of styryl molecules supertargeted to mitochondria. The strategy is based on a simple additive model relating the spectral and subcellular localization characteristics of styryl compounds to the two chemical building blocks that are used to synthesize the molecules. Using a cross-validation approach, the additive model predicts with a high degree of confidence the subcellular localization and spectral properties of the styryl product, from numerical scores that are independently associated with the individual building blocks of the molecule. The fit of the data indicates that more complex, nonadditive interactions between the two building blocks play a minor role in determining the molecule's optical or biological properties. Moreover, the observed additive relationship allows mechanistic inferences to be made regarding the structure-property relationship observed for this particular class of molecules. It points to testable, mechanistic hypotheses about bow chemical structure, fluorescence, and localization properties are related.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据