4.3 Article

Movements near the gate of a hyperpolarization-activated cation channel

期刊

JOURNAL OF GENERAL PHYSIOLOGY
卷 122, 期 5, 页码 501-510

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.200308928

关键词

SPIH; gating; Cd2+; cysteine mutagenesis

资金

  1. NHLBI NIH HHS [R01 HL070320, HL70320] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL070320] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Hyperpolarization-activated cation (HCN) channels regulate pacemaking activity in cardiac cells and neurons. Like the related depolarization-activated K+ channels (Kv channels), HCN channels use an intracellular activation gate to regulate access to an inner cavity, lined by the S6 transmembrane regions, which leads to the selectivity filter near the extracellular surface. Here we describe two types of metal interactions with substituted cysteines in the S6, which alter the voltage-controlled movements of the gate. At one position (1,466), substitution of cysteine in all four subunits allows Cd2+ ions at nanomolar concentration to stabilize the open state (a lock-open effect). This effect depends on native histidines at a nearby position (H462); the lock-open effect can be abolished by changing the histidines to tyrosines, or enhanced by changing them to cysteines. Unlike a similar effect in Kv channels, this effect depends on a Cd2+ bridge between 462 and 466 in the same subunit. Cysteine substitution at another position (Q468) produces two effects of Cd2+: both a lock-open effect and a dramatic slowing of channel activation-a lock-closed effect. The two effects can be separated, because the lock-open effect depends oil the histidine at position 462. The novel lock-closed effect, results from stabilization of the closed state by the binding of tip to four Cd2+ ions. During the opening conformational change, the S6 apparently moves from one position in which the 468C cysteines can bind four Cd2+ ions, possibly as a cluster of cysteines and cadmium ions near the central axis of the pore, to another position (or flexible range of positions) where either 466C or 468C can bind Cd2+ in association with the histidine at 462.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据