4.8 Letter

Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers

期刊

NATURE CELL BIOLOGY
卷 5, 期 11, 页码 980-986

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/ncb1060

关键词

-

向作者/读者索取更多资源

Muscle contraction is driven by the cyclical interaction of myosin with actin, coupled with ATP hydrolysis. Myosin attaches to actin, forming a crossbridge that produces force and movement as it tilts(1) or rocks into subsequent bound states(2) before finally detaching. It has been hypothesized that the kinetics of one or more of these mechanical transitions are dependent on load, allowing muscle to shorten quickly under low load, but to sustain tension economically, with slowly cycling crossbridges under high load conditions(2-6). The idea that muscle biochemistry depends on mechanical output is termed the 'Fenn effect'. However, the molecular details of how load affects the kinetics of a single crossbridge are unknown. Here, we describe a new technique based on optical tweezers to rapidly apply force to a single smooth muscle myosin crossbridge. The crossbridge produced movement in two phases that contribute 4 nm + 2 nm of displacement. Duration of the first phase depended in an exponential manner on the amplitude of applied load. Duration of the second phase was much less affected by load, but was significantly shorter at high ATP concentration. The effect of load on the lifetime of the bound crossbridge is to prolong binding when load is high, but to accelerate release when load is low or negative.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据