4.8 Article

Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing

期刊

CELL
卷 149, 期 7, 页码 1607-1621

出版社

CELL PRESS
DOI: 10.1016/j.cell.2012.04.012

关键词

-

资金

  1. Dana-Farber Cancer Institute-Memorial Sloan-Kettering Cancer Center Physical Sciences Oncology Center [NIH U54-CA143798]
  2. Engineering and Physical Sciences Research Council [EP/H028064/1]
  3. German National Academic Foundation
  4. EPSRC [EP/H028064/2, EP/H028064/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/H028064/1, EP/H028064/2] Funding Source: researchfish

向作者/读者索取更多资源

We show that amino acid covariation in proteins, extracted from the evolutionary sequence record, can be used to fold transmembrane proteins. We use this technique to predict previously unknown 3D structures for 11 transmembrane proteins (with up to 14 helices) from their sequences alone. The prediction method (EVfold_membrane) applies a maximum entropy approach to infer evolutionary covariation in pairs of sequence positions within a protein family and then generates all-atom models with the derived pairwise distance constraints. We benchmark the approach with blinded de novo computation of known transmembrane protein structures from 23 families, demonstrating unprecedented accuracy of the method for large transmembrane proteins. We show how the method can predict oligomerization, functional sites, and conformational changes in transmembrane proteins. With the rapid rise in large-scale sequencing, more accurate and more comprehensive information on evolutionary constraints can be decoded from genetic variation, greatly expanding the repertoire of transmembrane proteins amenable to modeling by this method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据