4.8 Article

Transposable elements reveal the impact of introgression, rather than transposition, in Pisum diversity, evolution, and domestication

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 20, 期 12, 页码 2067-2075

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msg220

关键词

transposable elements; Pisum evolution; molecular markers; recombination; domestication; retrotransposon activity

向作者/读者索取更多资源

The genetic structure and evolutionary history of the genus Pisum were studied exploiting our germplasm collection to compare the contribution of different mechanisms to the generation of diversity. We used sequence-specific amplification polymorphism (SSAP) markers to assess insertion site polymorphism generated by a representative of each of the two major groups of LTR-containing retrotransposons, PDR1 (Ty1/copia-like) and Cyclops (Ty3/gypsy-like), together with Pis], a member of the En/Spm transposon superfamily. The analysis of extended sets of the four main Pisum species, P. fulvum, P. elatius, P. abyssinicum, and P. sativum, together with the reference set, revealed a distinct pattern of the NJ (Neighbor-Joining) tree for each basic lineage, which reflects the different evolutionary history of each species. The SSAP markers showed that Pisum is exceptionally polymorphic for an inbreeding species. The patterns of phylogenetic relationships deduced from different transposable elements were in general agreement. The retrotransposon-derived markers gave a clearer separation of the main lineages than the Pis] markers and were able to distinguish the truly wild form of P. elatius from the antecedents of P. sativum. There were more species-specific and unique PDR1 markers than Pis] markers in P. fulvum and P. elatius, pointing to PDR1 activity during speciation and diversification, but the proportion of these markers is low. The overall genetic diversity of Pisum and the extreme polymorphism in all species, except P. abyssinicum, indicate a high contribution of recombination between multiple ancestral lineages compared to transposition within lineages. The two independently domesticated pea species, P. abyssinicum and P. sativum, arose in contrasting ways from the common processes of hybridization, introgression, and selection without associated transpositional activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据