4.7 Article

Retrieval of canopy biophysical variables from bidirectional reflectance - Using prior information to solve the ill-posed inverse problem

期刊

REMOTE SENSING OF ENVIRONMENT
卷 84, 期 1, 页码 1-15

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0034-4257(02)00035-4

关键词

inverse problem; prior information; lookup table; quasi-newton; neural network

向作者/读者索取更多资源

Estimation of canopy biophysical variables from remote sensing data was investigated using radiative transfer model inversion. Measurement and model uncertainties make the inverse problem ill posed, inducing difficulties and inaccuracies in the search for the solution. This study focuses on the use of prior information to reduce the uncertainties associated to the estimation of canopy biophysical variables in the radiative transfer model inversion process. For this purpose, lookup table (LUT), quasi-Newton algorithm (QNT), and neural network (NNT) inversion techniques were adapted to account for prior information. Results were evaluated over simulated reflectance data sets that allow a detailed analysis of the effect of measurement and model uncertainties. Results demonstrate that the use of prior information significantly improves canopy biophysical variables estimation. LUT and QNT are sensitive to model uncertainties. Conversely, NNT techniques are generally less accurate. However, in our conditions, its accuracy is little dependent significantly on modeling or measurement error. We also observed that bias in the reflectance measurements due to miscalibration did not impact very much the accuracy of biophysical estimation. (C) 2002 Elsevier Science Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据