4.7 Article

Linear stability analysis in fluid-structure interaction with transpiration. Part II: Numerical analysis and applications

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2003.08.001

关键词

fluid-structure interaction; transpiration; flutter; finite elements; sparse generalized eigenproblems; Cayley transform; Arnoldi method

向作者/读者索取更多资源

This paper constitutes the numerical counterpart of the mathematical framework introduced in Part I. We address the problem of flutter analysis of a coupled fluid-structure system involving an incompressible Newtonian fluid and a reduced structure. We use the Linearization Principle approach developed in Part I, particularly suited for fluid-structure problems involving moving boundaries. Thus, the stability analysis is reduced to the computation of the leftmost eigenvalues of a coupled eigenproblem of minimal complexity. This eigenproblem involves the linearized incompressible Navier-Stokes equations and those of a reduced linear structure. The coupling is realized through specific transpiration interface conditions. The eigenproblem is discretized using a finite element approximation and its smallest real part eigenvalues are computed by combining a generalized Cayley transform and an implicit restarted Arnoldi method. Finally, we report three numerical experiments: a structure immersed in a fluid at rest, a cantilever pipe conveying a fluid flow and a rectangular bridge deck profile under wind effects. The numerical results are compared to former approaches and experimental data. The quality of these numerical results is very satisfactory and promising. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据