4.6 Article

Ultrafine carbon black particles inhibit human lung fibroblast-mediated collagen gel contraction

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.4796

关键词

-

向作者/读者索取更多资源

Both acute and chronic exposure to particulates have been associated with increased mortality and morbidity from a number of causes, including chronic obstructive pulmonary disease and other chronic lung diseases. The current study evaluated the hypothesis that ultrafine carbon particles, a component of ambient particulates, could affect tissue repair. To assess this, the three-dimensional collagen gel contraction model was used. Ultrafine carbon black particles, but not fine carbon black, inhibited fibroblast-mediated collagen gel contraction. Although previous research has indicated that inflammatory effects of ultrafine carbon black particles are mediated by oxidant mechanisms, the current study suggests that ultrafine carbon black's inhibition of fibroblast gel contraction is mediated by the binding of both fibronectin and transforming growth factor (TGF)-beta to the ultrafine particles. Binding of TGF-beta was associated with a reduction in nuclear localization of Smads, indicative of inhibition of TGF-beta signal transduction. There was also a decrease in fibronectin mRNA, consistent with a decrease in TGF-beta-mediated response. Taken together, these results demonstrate the ability of ultrafine particles to contribute to altered tissue repair and extend the known mechanisms by which these biologically active particles exert their effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据