4.7 Article

Carbon acquisition of bloom-forming marine phytoplankton

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 48, 期 1, 页码 55-67

出版社

AMER SOC LIMNOLOGY OCEANOGRAPHY
DOI: 10.4319/lo.2003.48.1.0055

关键词

-

向作者/读者索取更多资源

Carbon acquisition in relation to CO2 supply was investigated in three marine bloom-forming microalgae, the diatom Skeletonema costatum, the flagellate Phaeocystis globosa, and the coccolithophorid Emiliania huxleyi. In vivo activities of extracellular (eCA) and intracellular (iCA) carbonic anhydrase activity, photosynthetic O-2 evolution, CO2 and HCO3- uptake rates were measured by membrane inlet mass spectrometry in cells acclimated to pCO(2) levels of 36, 180; 360, and 1,800 ppmv. Large differences were obtained between species both with regard to the efficiency and regulation of carbon acquisition. While eCA activity increased with decreasing CO2 concentration in S. costatum and P. globosa, consistently low values were obtained for E. huxleyi. No clear trends with pCO(2) were observed in iCA activity for any of the species tested. Half saturation concentrations (K-1/2) for photosynthetic O-2 evolution, which were highest for E. huxleyi and lowest for S. costatum, generally decreased with decreasing CO2 concentration. In contrast, K-1/2 values for P. globosa remained unaffected by pCO(2) of the incubation. CO2 and HCO3- were taken up simultaneously by all species. The relative contribution of HCO3- to total carbon uptake generally increased with decreasing CO2, yet strongly differed between species. Whereas K 2 for CO2 and HCO3- uptake was lowest at the lowest pCO(2) for S. costatum and E. huxleyi, it did not change as a function of pCO(2) in P. globosa. The observed taxon-specific differences in CO2 sensitivity, if representative for the natural environment, suggest that changes in CO2 availability may influence phytoplankton species succession and distribution. By modifying the relative contribution of different functional groups, e.g., diatomaceous versus calcareous phytoplankton, to the overall primary production this could potentially affect marine biogeochemical cycling and air-sea gas exchange.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据