4.7 Article

Comparison of nuclear and X-ray techniques for actinide analysis of environmental hot particles

期刊

JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY
卷 18, 期 10, 页码 1202-1209

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b305554j

关键词

-

向作者/读者索取更多资源

Actinide-containing radioactive hot particles have been dispersed into the environment during atmospheric nuclear tests, accidents of the nuclear fuel cycle and authorized discharges from nuclear reprocessing plants. Several other activities like illicit trafficking of radioactive material or the use of depleted uranium in shielding, weapons can also be considered as possible sources of contamination by actinides. The paper compares detection limits for actinide analysis by nuclear spectroscopy as well as various X-ray micro-fluorescence and absorption techniques using laboratory and synchrotron sources. The detection limits for X-ray techniques were calculated using Monte Carlo simulations. Detection limits obtained for X-ray microanalysis using synchrotron sources were close to that of nuclear analysis. For long half-life nuclides (more than 10(5) years), X-ray spectrometry was more sensitive, while being non-destructive and offering additional information on oxidation states using X-ray absorption. For U, alpha spectrometry resulted only in 10(-7) g (U-238) contrasting 10(-13) g obtained for monochromatic beam mu-XRF (micro X-ray fluorescence) at HASYLAB Beamline L. Using the combination of autoradiography and mu-XRF, identification and quantitative analysis of individual radioactive particles of 20 mum diameter were possible. Despite the strong spectral overlap with the Rb-Kalpha characteristic line, in fluorescence mode mu-XANES (micro X-ray absorption near-edge structure) it was possible to determine the oxidation state of 15 mug g(-1) U in a single hot particle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据