4.7 Article Proceedings Paper

Penetration impact resistance of hybrid composites based on commingled yarn fabrics

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 63, 期 3-4, 页码 467-482

出版社

ELSEVIER SCI LTD
DOI: 10.1016/S0266-3538(02)00233-6

关键词

polymer-matrix composites (PMCs); impact behaviour; deformation; fractography; resin transfer moulding (RTM)

向作者/读者索取更多资源

The penetration impact resistance of hybrid composites based on commingled yarn fabrics was investigated. The commingled yarn fabrics were composed of E-glass fibres (GF) and thermoplastic fibres blended together within the fibre bundles. Various thermoplastic fibres such as polypropylene (PP), polyamide (PA) and modified polyethylene terephthalate (mPET) were studied. Various resin matrices with different cure cycles were studied such as Quickeure polyester, Cycom X823 RTM epoxy, and Shell Epikote 828 epoxy resin. Depending on the crystalline melting temperature (T.) of the thermoplastic fibres, the hybrid composites can be categorised as fibre-hybrid composites or matrix-hybrid composites. Fibre-hybrid composites refer to those in which the thermoplastic fibres remain in the fibre form after curing, for example the GF-PP and GF-PA hybrid composites. For matrix-hybrid composites, the thermoplastic fibres melt and dissolve into the thermosetting matrix during curing such as the GF-mPET hybrid composites. The results from the penetration impact showed that the total absorbed energy of the fibre-hybrid composites were significantly higher than for the plain glass composites. Plastic deformation in the thermoplastic fibres is the key factor that improves the absorbed energy of the hybrid composites. When the thermoplastic fibres dissolved into the thermosetting matrix as in matrix-hybrid composites, the total absorbed energy was similar to that of the plain glass fibre composites. This suggests that the total absorbed energy is dependent on the properties of the fibres rather than the matrix. However, the fibre-hybrid composites showed slight differences in the total absorbed energy for different matrices. The differences are thought to be related to the differences in the bonding between the thermoplastic fibres and the thermosetting matrix which have yet to be investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据