4.8 Article

RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway

期刊

CELL
卷 138, 期 3, 页码 576-591

出版社

CELL PRESS
DOI: 10.1016/j.cell.2009.06.015

关键词

-

资金

  1. National Institutes of Health
  2. Welch Foundation
  3. Chilton Foundation
  4. Investigator of Howard Hughes Medical Institute

向作者/读者索取更多资源

Type I interferons (IFNs) are important for antiviral and autoimmune responses. Retinoic acid-induced gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) proteins mediate IFN production in response to cytosolic double-stranded RNA or single-stranded RNA containing 5'-triphosphate (5'-ppp). Cytosolic B form double-stranded DNA, such as poly(dA-dT).poly(dA-dT)[poly(dA-dT)], can also induce IFN-beta, but the underlying mechanism is unknown. Here, we show that the cytosolic poly(dA-dT) DNA is converted into 5'-ppp RNA to induce IFN-beta through the RIG-I pathway. Biochemical purification led to the identification of DNA-dependent RNA polymerase III (Pol-III) as the enzyme responsible for synthesizing 5'-ppp RNA from the poly(dA-dT) template. Inhibition of RNA Pol-III prevents IFN-beta induction by transfection of DNA or infection with DNA viruses. Furthermore, Pol-III inhibition abrogates IFN-beta induction by the intracellular bacterium Legionella pneumophila and promotes the bacterial growth. These results suggest that RNA Pol-III is a cytosolic DNA sensor involved in innate immune responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据