4.8 Article

Multilevel classification of milling tool wear with confidence estimation

出版社

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2003.1159947

关键词

tool wear; confidence; normalized cross entropy; HMM; sparsely-labeled training; machining; milling

向作者/读者索取更多资源

An important problem during industrial machining operations is the detection and classification of tool wear. Past research in this area has demonstrated the effectiveness of various feature sets and binary classifiers. Here, the goal is to develop a classifier which makes use of the dynamic characteristics of tool wear in a metal milling application and which replaces the standard binary classification result with two outputs: a prediction of the wear level (quantized) and a gradient measure that is the posterior probability (or confidence) that the tool is worn given the observed feature sequence. The classifier tracks the dynamics of sensor data within a single cutting pass as well as the evolution of wear from sharp to dull. Different alternatives to parameter estimation with sparsely-labeled training data are proposed and evaluated. We achieve high accuracy across changing cutting conditions, even with a limited feature set drawn from a single sensor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据