4.4 Article

Size and shape effects on two-phase flow patterns in microchannel forced convection boiling

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/13/1/322

关键词

-

向作者/读者索取更多资源

An integrated microchannel heat sink consisting of shallow, nearly rectangular microchannels has been fabricated using standard micromachining techniques to highlight the effects of the micrometer sized channel shape on the evolving flow patterns and, consequently, on the thermal performance of the microsystem. An integrated heater serves as a local heat source, while an array of micro thermistors is used for temperature distribution measurements. The working fluid, DI water, is pressurized through the microchannels for forced convection heat transfer studies. Boiling curves for different flow rates have been recorded and analyzed based on the visualized flow patterns. Local nucleation, including bubble formation and bubble dynamics, is documented and found to be negligible. Although detected, in contrast with triangular microchannels, annular flow is observed to be unstable. Instead, the dominant flow pattern is an unsteady transition region connecting an upstream vapor zone to a downstream liquid zone with an average location depending on the input power. A physical mechanism based on the force balance across the vapor-liquid interface, and the development of a restoring force, is proposed to explain the flow visualization results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据