4.0 Article

In vitro and in vivo degradation of mineralized collagen-based composite scaffold: Nanohydroxyapatite/collagen/poly(L-lactide)

期刊

TISSUE ENGINEERING
卷 10, 期 1-2, 页码 73-80

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/107632704322791718

关键词

-

向作者/读者索取更多资源

The objective of this article was to investigate the in vitro and in vivo biodegradation of a novel biomimetic bone scaffold composite, nanohydroxyapatite/collagen/poly(L-lactide), that could be used for bone tissue engineering. For evaluation of in vitro degradation specimens were immersed into 1% trypsin/phosphate-buffered saline solution at 37degreesC. In vivo evaluation involved the implantation of samples into the posterolateral lumbar spine of rabbits, and the retrieved specimens were analyzed by Fourier transform-infrared spectroscopy. The results demonstrated that weight loss increased continuously in vitro with a reduction in mass of 19.6% after 4 weeks. During the experimental period in vitro, the relative rate of reduction of the three components in this material was shown to differ greatly: collagen decreased the fastest, from 40% by weight to 20% in the composite; hydroxyapatite content increased from 45 to 60%; and PLA changed little. The pore structure was maintained throughout the whole experimental period in vitro; however, the thickness of the walls of the pores decreased and the surface of the walls increased in roughness. In vivo, the ratio of collagen to hydroxyapatite appeared to be slightly higher near the transverse process than in the central part of the intertransverse process. This finding may have been due to new bone matrix formation extending from the transverse to the intertransverse process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据