4.5 Article

Modification of human platelet adhesion on biomaterial surfaces by protein preadsorption under static and flow conditions

期刊

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/B:JMSM.0000010095.19693.67

关键词

-

向作者/读者索取更多资源

Biomaterial-induced thrombosis remains one of the main complications of vascular implant devices. Preadsorbed proteins on the biomaterial/blood interface will modify the adhesion and activation of platelets (PTLs) during the initial contact-phase. Our results clearly show that PTL-adherence on biomaterials is influenced not only by protein preadsorption, but also by flow conditions. The covalent coating of TCPS and glass by phosphorylcholine (PC) induces a significant decrease of PTL adhesion but leads to a slight, but nevertheless significant activation of PTL, which was detected by induction of P-selection expression using FACS analysis. Methodologically, the visualization of PTL adhesion have more reliable results for measurement of PTL adhesion than the cell-enzyme immunoassay (EIA) for P-selectin. Human citrated plasma caused an inhibition of PTL. It is probable, that the contained sodium citrate may inhibit PTL adhesion by its calcium ion-binding capacity. The flow experiment as dynamic system is in our view absolutely essential for the evaluation of biomaterials for vascular prosthesis, and is in accordance with the international standards. The results of the experiments also suggest that investigation under static and flow conditions are needed to determine the influence of protein adsorption on mixed blood cell populations, for example, on PTL and PMN mixtures/co-cultures in order to achieve a better simulation of the in vivo situation. (C) 2004 Kluwer Academic Publishers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据