4.7 Review

Membrane nanodomains in plants: capturing form, function, and movement

期刊

JOURNAL OF EXPERIMENTAL BOTANY
卷 66, 期 6, 页码 1573-1586

出版社

OXFORD UNIV PRESS
DOI: 10.1093/jxb/erv054

关键词

Detergent-resistant membranes; membrane nanodomains; nanodomain function; ordered membrane domains; plasma membrane ABC proteins; sphingolipids; sterols

资金

  1. Department of Energy, Basic Energy Sciences [DE-FG02-13ER16405]

向作者/读者索取更多资源

The plasma membrane is the interface between the cell and the external environment. Plasma membrane lipids provide scaffolds for proteins and protein complexes that are involved in cell to cell communication, signal transduction, immune responses, and transport of small molecules. In animals, fungi, and plants, a substantial subset of these plasma membrane proteins function within ordered sterol- and sphingolipid-rich nanodomains. High-resolution microscopy, lipid dyes, pharmacological inhibitors of lipid biosynthesis, and lipid biosynthetic mutants have been employed to examine the relationship between the lipid environment and protein activity in plants. They have also been used to identify proteins associated with nanodomains and the pathways by which nanodomain-associated proteins are trafficked to their plasma membrane destinations. These studies suggest that plant membrane nanodomains function in a context-specific manner, analogous to similar structures in animals and fungi. In addition to the highly conserved flotillin and remorin markers, some members of the B and G subclasses of ATP binding cassette transporters have emerged as functional markers for plant nanodomains. Further, the glycophosphatidylinositol-anchored fasciclin-like arabinogalactan proteins, that are often associated with detergent-resistant membranes, appear also to have a functional role in membrane nanodomains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据