4.5 Article

Molecular dynamics study of Ar flow and He flow inside carbon nanotube junction as a molecular nozzle and diffuser

期刊

SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS
卷 5, 期 1-2, 页码 107-113

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1016/j.stam.2003.10.011

关键词

molecular dynamics; nanotube; junction; nozzle; diffuser; fluid; flow; molecular machine; nanotechnology; carbon

向作者/读者索取更多资源

A carbon nanotube junction consists of two connected nanotubes with different diameters. It has been extensively investigated as a molecular electronic device since carbon nanotubes can be metallic and semiconductive, depending on their structure. However, a carbon nanotube junction can also be viewed as a nanoscale nozzle andv diffuser. Here, we focus on the nanotube junction from the perspective of an intersection between machine, material and device. We have conducted a molecular dynamics simulation of the molecular flow inside a modeled ( 12,12)-(8,8) nanotube junction. A strong gravitational field and a periodic boundary condition are applied in the flow direction. We investigated dense-Ar flows and dense-He flows while controlling the temperature of the nanotube junction. The results show that Ar atoms tend to be near to the wall and the density of the Ar is higher in the wide (12,12) nanotube than in the narrow (8,8) nanotube, while it is lower in the wide tube when no flow occurs. The streaming velocities of both the Ar and the He are higher in the narrow nanotube than in the wide nanotube, but the velocity of the Ar is higher than the velocity of the He and the temperature of the flowing Ar is higher than the temperature of the He when the same magnitude of gravitational field is applied. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据