4.5 Article

Nanoparticle coagulation in a planar jet

期刊

AEROSOL SCIENCE AND TECHNOLOGY
卷 38, 期 1, 页码 79-89

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/02786820490247669

关键词

-

向作者/读者索取更多资源

Direct numerical simulation of nanoparticle coagulation in a planar jet is performed. The particle field is represented using a sectional method to approximate the aerosol general dynamic equation. The methodology is advantageous in that there are no a priori assumptions regarding the particle size distribution and coupled with an unsteady Navier-Stokes solver, it provides the spatio-temporal evolution of the particle field in an accurate manner. The jet consists of an incompressible fluid containing particles 1 nm in diameter issuing into a particle-free coflowing stream. Ten sections are solved allowing the particle field to develop to 8 nm in diameter. Results show that the geometric standard deviation reaches the self-preserving value within one jet diameter downstream of the nozzle and remains at that value up to 7.5 jet diameters. In this proximal region, the particle size is relatively uniform throughout the jet. Further downstream, the effects of large-scale vortical structures is to increase the residence time of particles within the domain and perturb the geometric standard deviation beyond the self-preserving value.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据