4.5 Review

Proteomic responses to environmentally induced oxidative stress

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 218, 期 12, 页码 1867-1879

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jeb.116475

关键词

Endoplasmic reticulum; Environmental proteomics; Glutathione; Mitochondria; NAD(H); NADP(H); Peroxiredoxin; Peroxisome; Reactive oxygen species; Thioredoxin

类别

资金

  1. National Science Foundation [EF-1041227, IOS-1145840]
  2. Direct For Biological Sciences
  3. Division Of Integrative Organismal Systems [1145840] Funding Source: National Science Foundation

向作者/读者索取更多资源

Environmental (acute and chronic temperature, osmotic, hypoxic and pH) stress challenges the cellular redox balance and can lead to the increased production of reactive oxygen species (ROS). This review provides an overview of the reactions producing and scavenging ROS in the mitochondria, endoplasmic reticulum (ER) and peroxisome. It then compares these reactions with the findings of a number of studies investigating the proteomic responses of marine organisms to environmentally induced oxidative stress. These responses indicate that the thioredoxin-peroxiredoxin system is possibly more frequently recruited to scavenge H2O2 than the glutathione system. Isoforms of superoxide dismutase (SOD) are not ubiquitously induced in parallel, suggesting that SOD scavenging activity is sometimes sufficient. The glutathione system plays an important role in some organisms and probably also contributes to protecting protein thiols during environmental stress. Synthesis pathways of cysteine and selenocysteine, building blocks for glutathione and glutathione peroxidase, also play an important role in scavenging ROS during stress. The increased abundance of glutaredoxin and DyP-type peroxidase suggests a need for regulating the deglutathionylation of proteins and scavenging of peroxynitrite. Reducing equivalents for these scavenging reactions are generated by proteins of the pentose phosphate pathway and by NADP-dependent isocitrate dehydrogenase. Furthermore, proteins representing reactions of the tricarboxylic acid cycle and the electron transport system generating NADH and ROS, including those of complex I, II and III, are frequently reduced in abundance with stress. Protein maturation in the ER likely represents another source of ROS during environmental stress, as indicated by simultaneous changes in ER chaperones and antioxidant proteins. Although there are still too few proteomic analyses of non-model organisms exposed to environmental stress for a general pattern to emerge, hyposaline and low pH stress show different responses from temperature and hypoxic stress. Furthermore, comparisons of closely related congeners differing in stress tolerance start to provide insights into biochemical processes contributing to adaptive differences, but more of these comparisons are needed to draw general conclusions. To fully take advantage of a systems approach, studies with longer time courses, including several tissues and more species comparisons are needed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据