4.6 Article

An improved procedure for isolation of residual lignins from hardwood kraft pulps

期刊

HOLZFORSCHUNG
卷 58, 期 5, 页码 464-472

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/HF.2004.070

关键词

cellulase; enzymatic hydrolysis; hardwood kraft pulp; hemicellulase; lignin-carbohydrate complex; residual lignin

向作者/读者索取更多资源

Residual lignin preparations were isolated from birch, aspen and Eucalyptus grandis kraft pulp by enzymatic hydrolysis of the pulps with cellulase:hemicellulase mixture. Residual lignin preparations were characterized by investigation of nitrogen content, carbohydrate composition and molecular mass distribution. The use of enzyme with high activity and optimization of enzyme charge resulted in significant decrease in protein contaminants in residual lignin preparations as compared to previously published results. A second order law correlation between enzyme mass charge and nitrogen content in birch residual lignin preparations indicates a strong effect of enzyme charge on the amount of protein contaminants. However, the enzyme charge in the range studied does not appreciably affect either the yields of the residual lignin preparations or percentage and composition of carbohydrates in these preparations. The optimal enzyme charge was highest for Eucalyptus grandis pulp and lowest for birch pulp. It has been suggested that a significant part of the hardwood residual lignin in pulps, especially in E. grandis pulp, consists of low molecular mass lignin fragments bonded to pulp carbohydrates. Higher amount of glucose in E. grandis residual lignin preparation compared to those from birch and aspen implied a higher frequency of lignincellulose bonds in eucalypt pulp. Different fractions of birch residual lignin have rather similar molecular mass distribution, which was not affected by the charge of the enzyme. Eucalypt residual lignin preparation had higher molecular mass than birch residual lignin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据