4.6 Article

Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling

期刊

NATURAL HAZARDS
卷 31, 期 1, 页码 289-304

出版社

SPRINGER
DOI: 10.1023/B:NHAZ.0000020267.39691.39

关键词

shallow landslides; slope stability; land use change; dynamic modelling; GIS

向作者/读者索取更多资源

Physically based models are capable of evaluating the effects of environmental changes through adaptations in their parameters. For landslide hazard zonation, this gives them an edge over traditional, statistically based techniques that require large datasets and often lack the objectivity to achieve the same purpose. Therefore, physical models can be valuable tools for hazard assessment and planning purposes. The usefulness of the model prognosis depends largely on the ability of the physical model to mimic the landscape system. This implies that the model should be calibrated and validated and that the imposed changes do not lead to a radical departure from the present situation. Under the recognition of these constraints, a physically based model has been applied to a 1.5 km(2) catchment in the Alcoy region (SE Spain) to evaluate the effects of land use change on landslide activity. The model couples a transient, distributed hydrological model with a probabilistic assessment of the slope stability. Thus, it is able to assess the spatial and temporal activity of slope instability. For the present situation, validation demonstrates that the probability of failure returns a conservative estimate of the spatial frequency of landsliding. The model has subsequently been applied to two hypothetical land use change scenarios that extrapolate present and likely trends. For these scenarios, the model results indicate a marginal decrease in the spatial frequency of landsliding ( aerial extent of instability). However, the decrease in the temporal activity ( is total duration of instability over a given period) is substantial under the altered land use conditions. The forecasted change in landslide activity not only affects the relative weight of slope processes in the region. It also has implications for the perceived hazard levels and the landslide hazard zonation of the area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据