4.7 Article Proceedings Paper

Steam reforming of ethanol over nickel molybdenum carbides for hydrogen production

期刊

CATALYSIS TODAY
卷 146, 期 1-2, 页码 87-95

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cattod.2008.12.033

关键词

Hydrogen production; Ethanol; NiMo carbide; CO adsorption; XRD; X-ray photoelectron spectroscopy; Temperature-programmed surface reaction

向作者/读者索取更多资源

The steam reforming of ethanol over carburized NiMo catalysts was studied to determine the effects of the Ni content, carburization temperature in 20% CH4/H-2, GHSV, potassium addition and a comparison of the reduced catalyst. The catalysts were characterized by CO adsorption, XRD, X-ray electron spectroscopy (XPS) and temperature-programmed surface reaction after ethanol adsorption. The 798 K-carburized NiMo catalyst gradually increased below 500 min and it exhibited a higher activity than the reduced NiMo catalyst. The addition of potassium promoted more hydrogen selectivity than the nonpotassium-added catalysts. The 798 K-carburized catalyst exhibited the high intensity peaks of MoO2 and small peaks Of beta-Mo2C and Ni metal (or NiMo) were present, while the 823 K-carburized catalyst showed broad and small peaks. The 873 and 848 K-carburized catalysts contained a strong intensity of beta-Mo2C and clear Ni metal (or NiMo). The XPS measurements revealed that the hydrogen production was proportional to Ni-0 of the carburized NiMo catalyst. The addition of potassium significantly increases the Ni-0 ratio, which was stabilized instead of increasing the Mo oxidation during the reaction. (C) 2009 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据