4.5 Article

Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus

期刊

JOURNAL OF EXPERIMENTAL BIOLOGY
卷 218, 期 19, 页码 2991-3001

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/jeb.120717

关键词

Aerobic scope; Global warming; Climate change; Ocean acidification; Gastropod; Mollusc

类别

资金

  1. Carlsberg Foundation
  2. Nansen Foundation
  3. University of Oslo
  4. ARC Centre of Excellence for Coral Reef Studies

向作者/读者索取更多资源

Tropical coral reef organisms are predicted to be especially sensitive to ocean warming because many already live close to their upper thermal limit, and the expected rise in ocean CO2 is proposed to further reduce thermal tolerance. Little, however, is known about the thermal sensitivity of a diverse and abundant group of reef animals, the gastropods. The humpbacked conch (Gibberulus gibberulus gibbosus), inhabiting subtidal zones of the Great Barrier Reef, was chosen as a model because vigorous jumping, causing increased oxygen uptake ((M) over dot O-2), can be induced by exposure to odour from a predatory cone snail (Conus marmoreus). We investigated the effect of present-day ambient (417-454 mu atm) and projected-future (955-987 mu atm) PCO2 on resting ((M) over dot O-2,(rest)) and maximum ((M) over dot O-2,(max)) ((M) over dot O-2,O- (rest)), as well as MO2 during hypoxia and critical oxygen tension (PO2, crit), in snails kept at present-day ambient (28 degrees C) or projected-future temperature (33 degrees C). ((M) over dot O-2,O-rest), rest and ((M) over dot O-2,O-max), were measured both at the acclimation temperature and during an acute 5 degrees C increase. Jumping caused a 4-to 6-fold increase in ((M) over dot O-2), and ((M) over dot O-2,(max)) increased with temperature so that absolute aerobic scope was maintained even at 38 degrees C, although factorial scope was reduced. The humpbacked conch has a high hypoxia tolerance with a PO2, crit of 2.5 kPa at 28 degrees C and 3.5 kPa at 33 degrees C. There was no effect of elevated CO2 on respiratory performance at any temperature. Long-term temperature records and our field measurements suggest that habitat temperature rarely exceeds 32.6 degrees C during the summer, indicating that these snails have aerobic capacity in excess of current and future needs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据