4.6 Review

The cellulosomes: Multienzyme machines for degradation of plant cell wall polysaccharides

期刊

ANNUAL REVIEW OF MICROBIOLOGY
卷 58, 期 -, 页码 521-554

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev.micro.57.030502.091022

关键词

cellulases; hemicellulases; multiprotein complexes; cohesin-dockerin interaction; scaffoldin; protein-protein interactions

向作者/读者索取更多资源

The discrete multicomponent, multienzyme cellulosome complex of anaerobic cellulolytic bacteria provides enhanced synergistic activity among the different resident enzymes to efficiently hydrolyze intractable cellulosic and hemicellulosic substrates of the plant cell wall. A pivotal noncatalytic subunit called scaffoldin secures the various enzymatic subunits into the complex via the cohesin-dockerin interaction. The specificity characteristics and tenacious binding between the scaffoldin-based cohesin modules and the enzyme-borne dockerin domains dictate the supramolecular architecture of the cellulosome. The diversity in cellulosome architecture among the known cellulosome-producing bacteria is manifest in the arrangement of their genes in either multiple-scaffoldin or enzyme-linked clusters on the genome. The recently described three-dimensional crystal structure of the cohesin-dockerin heterodimer sheds light on the critical amino acids that contribute to this high-affinity protein-protein interaction. In addition, new information regarding the regulation of cellulosome-related 66 genes, budding genetic tools, and emerging genomics of cellulosome-producing bacteria promises new insight into the assembly and consequences of the multienzyme complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据