4.6 Review

The genetics of geochemistry

期刊

ANNUAL REVIEW OF GENETICS
卷 38, 期 -, 页码 175-202

出版社

ANNUAL REVIEWS
DOI: 10.1146/annurev.genet.38.072902.091138

关键词

biogeochemistry; arsenic; iron; respiration; photosynthesis

向作者/读者索取更多资源

Bacteria are remarkable in their metabolic diversity due to their ability to harvest energy from myriad oxidation and reduction reactions. In some cases, their metabolisms involve redox transformations of metal(loid)s, which lead to the precipitation, transformation, or dissolution of minerals. Microorganism/mineral interactions not only affect the geochemistry of modem environments, but may also have contributed to shaping the near-surface environment of the early Earth. For example, bacterial anaerobic respiration of ferric iron or the toxic metalloid arsenic is well known to affect water quality in many parts of the world today, whereas the utilization of ferrous iron as an electron donor in anoxygenic photosynthesis may help explain the origin of Banded Iron Formations, a class of ancient sedimentary deposits. Bacterial genetics holds the key to understanding how these metabolisms work. Once the genes and gene products that catalyze geochemically relevant reactions are understood, as well as the conditions that trigger their expression, we may begin to predict when and to what extent these metabolisms influence modem geochemical cycles, as well as develop a basis for deciphering their origins and how organisms that utilized them may have altered the chemical and physical features of our planet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据