4.2 Article

Presenilin 1 and Cadherins: Stabilization of Cell-Cell Adhesion and Proteolysis-Dependent Regulation of Transcription

期刊

NEURODEGENERATIVE DISEASES
卷 1, 期 4-5, 页码 184-191

出版社

KARGER
DOI: 10.1159/000080984

关键词

Alzheimer's disease; Amyloid precursor protein; Presenilin; Cadherin

资金

  1. European Union [QLK3-CT-2001-02362]

向作者/读者索取更多资源

Presenilin-1 (PS1) has gained intensive attention in relation to Alzheimer's disease, since it has been shown that PS1 mutations are linked to familial Alzheimer's disease (FAD), and that PS1 is a member of the high molecular weight complex of gamma-secretase, which generates the carboxyl end of beta-amyloid peptide (gamma-cleavage). A parallel line of evidence suggests that upon formation of cell-cell contacts, presenilin colocalizes with cadherins at the cell surface and stabilizes the cadherin-based adhesion complex. Under conditions stimulating cell-cell dissociation, cadherins are processed by a PS1/gamma-secretase activity, promoting disassembly of adherens junctions, and resulting in the increase of cytosolic beta-catenin, which is an important regulator of the Wnt/Wingless signaling pathway. PS1 also controls the cleavage of a number of transmembrane proteins at the interface of their transmembrane and cytosolic domains (epsilon-cleavage), producing intracellular fragments with a putative transcriptional role. Remarkably, cleavage of N-cadherin by PS1 produces an intracellular fragment that downregulates CREB-mediated transcription, indicating a role of PS1 in gene expression. PS1 mutations associated with FAD abolish production of the N-cadherin intracellular fragment and thus fail to suppress CREB-dependent transcription. These findings suggest an alternative explanation for FAD that is separate from the widely accepted 'amyloid hypothesis': dysfunction in transcription regulatory mechanisms. Copyright (C) 2004 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据