4.6 Article

Variable-range hopping in quasi-one-dimensional electron crystals

期刊

PHYSICAL REVIEW B
卷 69, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.035413

关键词

-

向作者/读者索取更多资源

We study the effect of impurities on the ground state and the low-temperature Ohmic dc transport in a one-dimensional chain and quasi-one-dimensional systems of many parallel chains. We assume that strong interactions impose a short-range periodicity of the electron positions. The long-range order of such an electron crystal (or equivalently, a 4k(F) charge-density wave) is destroyed by impurities, which act as strong pinning centers. We show that a three-dimensional array of chains behaves differently at large and at small impurity concentrations N. At large N, impurities divide the chains into metallic rods. Additions or removal of electrons from such rods correspond to charge excitations whose density of states exhibits a quadratic Coulomb gap. At low temperatures the conductivity is due to the variable-range hopping of electrons between the rods. It obeys the Efros-Shklovskii (ES) law, -ln sigmasimilar to(T-ES/T)(1/2). T-ES decreases as N decreases, which leads to an exponential growth of sigma. When N is small, the metallic-rod (also known as interrupted-strand) picture of the ground state survives only in the form of rare clusters of atypically short rods. They are the source of low-energy charge excitations. In the bulk of the crystal the charge excitations are gapped and the electron crystal is pinned collectively. A strongly anisotropic screening of the Coulomb potential produces an unconventional linear in energy Coulomb gap and an unusual law of the variable-range hopping conductivity -ln sigmasimilar to(T-1/T)(2/5). The parameter T-1 remains constant over a finite range of impurity concentrations. At smaller N the 2/5 law is replaced by the Mott law, -ln sigmasimilar to(T-M/T)(1/4). In the Mott regime the conductivity gets suppressed as N goes down. Thus, the overall dependence of sigma on N is nonmonotonic. In the case of a single chain, the metallic-rod picture applies at all N. The low-temperature conductivity obeys the ES law, with log corrections, and decreases exponentially with N. Our theory provides a qualitative explanation for the transport properties of organic charge-density wave compounds of TCNQ family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据