4.6 Article

Random diode arrays and mesoscale physics of large-area semiconductor devices

期刊

PHYSICAL REVIEW B
卷 69, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.045325

关键词

-

向作者/读者索取更多资源

Large-area, thin-film semiconductor devices often exhibit strong fluctuations in electronic properties on a mesoscale level that originate from relatively weak microscopic fluctuations in material structures such as grain size, chemical composition, and film thickness. Amplification comes from the fact that electronic transport through potential barriers is exponentially sensitive to the local parameter fluctuations. These effects create new phenomena and establish the physics of large-area, thin-film devices as a distinctive field of its own, quite different from that of microelectronics. We show that (i) large-area semiconductor thin-film devices are intrinsically nonuniform in the lateral directions, (ii) the nonuniformity can span length scales from millimeters to meters depending on external drivers such as light intensity and bias, and (iii) this nonuniformity significantly impacts the performance and stability of, e.g., photovoltaics, liquid crystal displays, and light emitting arrays. From the theoretical standpoint our consideration introduces a new class of disordered systems, which are random diode arrays. We propose a theory describing one class of such arrays and derive a figure of merit that characterizes the significance of nonuniformity effects. Our understanding suggests some methods for blocking the effects of nonuniformities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据