4.6 Article

Generic properties of a quasi-one-dimensional classical Wigner crystal

期刊

PHYSICAL REVIEW B
卷 69, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.045324

关键词

-

向作者/读者索取更多资源

We studied the structural, dynamical properties and melting of a quasi-one-dimensional system of charged particles, interacting through a screened Coulomb potential. The ground-state energy was calculated and, depending on the density and the screening length, the system crystallizes in a number of chains. As a function of the density (or the confining potential), the ground state configurations and the structural transitions between them were analyzed both by analytical and Monte Carlo calculations. The system exhibits a rich phase diagram at zero temperature with continuous and discontinuous structural transitions. We calculated the normal modes of the Wigner crystal and the magnetophonons when an external constant magnetic field B is applied. At finite temperature the melting of the system was studied via Monte Carlo simulations using the modified Lindemann criterion (MLC). The melting temperature as a function of the density was obtained for different screening parameters. Reentrant melting as a function of the density was found as well as evidence of directional dependent melting. The single-chain regime exhibits anomalous melting temperatures according to the MLC and as a check we study the pair-correlation function at different densities and different temperatures, which allowed us to formulate a different melting criterion. Possible connection with recent theoretical and experimental results are discussed and experiments are proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据