4.8 Article

Use of replication-conditional adenovirus as a helper system to enhance delivery of P450 prodrug-activation genes for cancer therapy

期刊

CANCER RESEARCH
卷 64, 期 1, 页码 292-303

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-03-1798

关键词

-

类别

资金

  1. NATIONAL CANCER INSTITUTE [R01CA049248] Funding Source: NIH RePORTER
  2. NCI NIH HHS [CA49248] Funding Source: Medline

向作者/读者索取更多资源

Cytochrome P450 (CYP) gene transfer sensitizes tumor xenografts to anticancer prodrugs such as cyclophosphamide (CPA) without a detectable increase in host toxicity. Optimal prodrug activation is achieved when a suitable P450 gene (e.g., human CYP2B6) is delivered in combination with NADPH-cytochrome P450 reductase (P450R), which encodes the flavoenzyme P450 reductase. We sought to improve this gene therapy by coordinated delivery and expression of P450 and P450R on a single bicistronic vector using an internal ribosomal entry site (IRES) sequence. Retrovirus encoding a CYP2B6-IRES-P450R expression cassette was shown to induce strong P450-dependent CPA cytotoxicity in a population of infected 9L gliosarcoma cells. Adeno-P450, a replication-defective, E1/E3 region-deleted adenovirus engineered to express CYP2B6-IRES-P450R, induced intracellular CPA 4-hydroxylation, and CPA cytotoxicity, in a broad range of human cancer cell lines. However, limited Adeno-P450 gene transfer and CPA chemosensitization was seen with certain human tumor cells, notably PC-3 prostate and HT-29 colon cancer cells. Remarkable improvements could be obtained by coinfecting the tumor cells with Adeno-P450 in combination with Onyx-017, an E1b-55k gene-deleted adenovirus that selectively replicates in p53 pathway-deficient cells. Substantial increases in gene expression were observed during the early stages of viral infection, reflecting an apparent coamplification of the Adeno-P450 genome, followed by enhanced viral spread at later stages, as demonstrated in cultured tumor cells, and in A549 and PC-3 solid tumor xenografts grown in scid mice. This combination of the replication-defective Adeno-P450 with a replication-conditional and tumor cell-targeted helper adenovirus dramatically improved the low gene transfer observed with some human tumor cell lines and correspondingly increased tumor cell-catalyzed CPA 4-hydroxylation, CPA cytotoxicity, and in vivo antitumor activity in a PC-3 tumor xenograft model. The use of tumor-selective, replicating adenovirus to promote the spread of replication-defective gene therapy vectors, such as Adeno-P450, substantially increases the therapeutic potential or adenoviral delivery systems, and should lead to increased activity and enhanced tumor selectivity of cytochrome P450 and other gene-directed enzyme prodrug therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据