4.8 Article

Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field

期刊

ANALYTICAL CHEMISTRY
卷 76, 期 1, 页码 15-22

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac030303m

关键词

-

向作者/读者索取更多资源

We have established the nanofabrication technique for constructing nanopillars with high aspect ratio (100-500 nm diameter and 500-5000 nm tall) inside a microchannel on a quartz chip. The size of pillars and the spacing between pillars are designed as a DNA sieving matrix for optimal analysis of large DNA fragments over a few kilobase pairs (kbp). A chip with nanopillar channel and simple cross injector was developed based on the optimal design and applied to the separation of DNA fragments (1-38 kbp) and large DNA fragments (lambda DNA, 48.5 kbp; T4 DNA, 165.6 kbp) that are difficult to separate on conventional gel electrophoresis and capillary electrophoresis without a pulsed-field technique. DNA fragments ranging from 1 to 38 kbp were separated as clear bands, and furthermore, the mixture of lambda DNA and T4 DNA was successfully separated by a 380-mum-long nanopillar channel within only 10 s even under a direct current (dc) electric field. Theoretical plate number N of the channel (380-1450 mum long) was 1000-3000 (0.7 x 10(6)-2.1 x 10(6) plates/m). A single DNA molecule observation during electrophoresis in a nanopillar channel revealed that the optimal nanopillars induced T4 DNA to form a narrow U-shaped conformation during electrophoresis whereas lambda DNA kept a rather spherical conformation. We demonstrated that, even under a dc electric field, the optimal nanopillar dimensions depend on a gyration radius of DNA molecule that made it possible to separate large DNA fragments in a short time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据