4.8 Article

Reversibly switchable DNA nanocompartment on surfaces

期刊

NUCLEIC ACIDS RESEARCH
卷 32, 期 19, 页码 -

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gnh145

关键词

-

向作者/读者索取更多资源

Biological macromolecules have been used to fabricate many nanostructures, biodevices and biomimetics because of their physical and chemical properties. But dynamic nanostructure and biomachinery that depend on collective behavior of biomolecules have not been demonstrated. Here, we report the design of DNA nanocompartments on surfaces that exhibit reversible changes in molecular mechanical properties. Such molecular nanocompartments are used to encage molecules, switched by the collective effect of Watson-Crick base-pairing interactions. This effect is used to perform molecular recognition. Furthermore, we found that 'fuel' strands with single-base variation cannot afford an efficient closing of nanocompartments, which allows highly sensitive label-free DNA array detection. Our results suggest that DNA nanocompartments can be used as building blocks for complex biomaterials because its core functions are independent of substrates and mediators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据