4.6 Article

A mathematical model for the lithium-ion negative electrode solid electrolyte interphase

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 151, 期 11, 页码 A1977-A1988

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.1804812

关键词

-

向作者/读者索取更多资源

The passivating solid electrolyte interphase (SEI) layer forms at the surface of the negative-electrode active material in lithium-ion cells. A continuum-scale mathematical model has been developed to simulate the growth of the SEI and transport of lithium and electrons through the film. The model is used to estimate the film growth rate, film resistance, and irreversible capacity loss due to film formation. We show that film growth at the negative electrode is faster for charged batteries than for uncharged batteries and that higher electron mobility in the film leads to faster growth. If electron mobility is low, the rate of film growth is limited by transport of electrons through the film, and the rate decreases as the thickness increases. We examine the dependence of film resistance upon both film thickness and defect concentration in the film. We also show that the concentration polarization in the film increases as it grows at open circuit, even though the concentration gradient may decrease. (C) 2004 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据