4.6 Article

The effect of interfacial deformation on electrodeposition kinetics

期刊

JOURNAL OF THE ELECTROCHEMICAL SOCIETY
卷 151, 期 6, 页码 A880-A886

出版社

ELECTROCHEMICAL SOC INC
DOI: 10.1149/1.1710893

关键词

-

向作者/读者索取更多资源

Mullins-Sekerka linear stability analysis and the Barton and Bockris dendrite-propagation model are popular methods used to describe cathodic roughening and dendritic growth. These commonly cited theories employ kinetic relationships that differ in mathematical form, but both contain the effects of surface tension and local concentration deviations induced by surface roughening. Here, a kinetic model is developed which additionally includes mechanical forces such as elasticity, viscous drag, and pressure, showing their effect on exchange current densities and potentials at roughening interfaces. The proposed expression describes the current density in terms of applied overpotential at deformed interfaces with arbitrary three-dimensional interfacial geometry. Both the Mullins-Sekerka and the Barton-Bockris kinetics can be derived as special cases of the general expression, thereby validating the proposed model and elucidating the fundamental assumptions on which the two previous theories rely. (C) 2004 The Electrochemical Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据