4.5 Article

Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor

期刊

NEUROSCIENCE
卷 123, 期 2, 页码 429-440

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2003.09.020

关键词

synapsin 1; CREB; neuronal plasticity; cognitive function; hippocampus; water maze

资金

  1. NINDS NIH HHS [NS 39522, NS 38978] Funding Source: Medline
  2. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS039522, R01NS038978] Funding Source: NIH RePORTER

向作者/读者索取更多资源

A diet high in total fat (HF) reduces hippocampal levels of brain-derived neurotrophic factor (BDNF), a crucial modulator of synaptic plasticity, and a predictor of learning efficacy. We have evaluated the capacity of voluntary exercise to interact with the effects of diet at the molecular level. Animal groups were exposed to the HF diet for 2 months with and without access to voluntary wheel running. Exercise reversed the decrease in BDNF and its downstream effectors on plasticity such as synapsin I, a molecule with a key role in the modulation of neurotransmitter release by BDNF, and the transcription factor cyclic AMP response element binding protein (CREB), important for learning and memory. Furthermore, we found that exercise influenced the activational state of synapsin as well as of CREB, by increasing the phosphorylation of these molecules. In addition, exercise prevented the deficit in spatial learning induced by the diet, tested in the Morris water maze. Furthermore, levels of reactive oxygen species increased by the effects of the diet were decreased by exercise. Results indicate that exercise interacts with the same molecular systems disrupted by the HF diet, reversing their effects on neural function. Reactive oxygen species, and BDNF in conjunction with its downstream effectors on synaptic and neuronal plasticity, are common molecular targets for the action of the diet and exercise. Results unveil a possible molecular mechanism by which lifestyle factors can interact at a molecular level, and provide information for potential therapeutic applications to decrease the risk imposed by certain lifestyles. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据