4.5 Article

DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer

期刊

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1055-9965.EPI-03-0053

关键词

-

资金

  1. NCI NIH HHS [CA88164, CA94211] Funding Source: Medline
  2. NATIONAL CANCER INSTITUTE [R01CA094211, R01CA088164] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The X-ray repair cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XPD) genes are involved in base excision repair and nucleotide excision repair of DNA repair pathways, respectively. A growing body of evidence suggests that XRCC1 and XPD are important in environmentally induced cancers, and polymorphisms in both genes have been identified. To determine whether the XRCC1 (codon Arg399Gln) and XPD (codon Asp312Asn and codon Lys751Gln) polymorphisms are associated with prostate cancer susceptibility, we genotyped these polymorphisms in a primarily Caucasian sample of 506 sibships (it = 1,117) ascertained through a brother with prostate cancer. Sibships were analyzed with a Cox proportional hazards model with age at prostate cancer diagnosis as the outcome. Of the three polymorphisms investigated, only the XPD codon 312 Asn/Asn genotype had an odds ratio (OR) significantly different from one (OR, 1.61; 95% CI, 1.03-2.53). Analyses stratified by the clinical characteristics of affected brothers in the sibship did not reveal any significant heterogeneity in risk. In exploring two-way, gene interactions, we found a markedly elevated risk for the combination of the XPD codon 312 Asn/Asn and XRCC1 codon 399 Gln/Gln genotypes (OR, 4.81; 95% CI, 1.66-13.97). In summary, our results suggest that the XPD codon 312 Asn allele may exert a modest positive effect on prostate cancer risk when two copies of the allele are present, and this effect is enhanced by the XRCC1 codon 399 Wit allele in its recessive state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据