4.5 Article

Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures

期刊

NEUROSCIENCE
卷 123, 期 3, 页码 751-759

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2003.10.012

关键词

neurons; multidrug resistance protein; pilocarpine; epilepsy; pharmacoresistance; antiepileptic drugs

向作者/读者索取更多资源

In the brain, the efflux transporter P-glycoprotein (Pgp) is predominantly located on the luminal membrane of endothelial cells lining brain microvessels and forming the blood-brain barrier. Many lipophilic drugs, including antiepileptic drugs, are potential substrates for Pgp. Overexpression of Pgp in endothelial cells of the blood-brain barrier has been determined in patients with drug resistant forms of epilepsy such as temporal lobe epilepsy and rodent models of temporal lobe epilepsy and suggested to lead to reduced penetration of antiepileptic drugs into the brain. Expression of Pgp after seizures has also been described in astrocytes, whereas it is not clear whether neurons can express Pgp. In the present study, Pgp expression was studied by immunohistochemistry in rats 24 h after a status epilepticus induced by either pilocarpine or kainate, widely used models of temporal lobe epilepsy. Unexpectedly, in addition to endothelial Pgp staining, intense Pgp staining was found in neurons in the CA3c/CA4 sectors and hilus of the hippocampus formation, but not in other brain regions examined. The neuronal Pgp staining was confirmed by two different Pgp antibodies. Double immunolabeling and confocal microscopy showed that Pgp was colocalized with the neuronal marker neuronal nuclear antigen, but not with the glial marker glial fibrillary acidic protein. No neuronal Pgp staining was seen in control rats. The expression of Pgp in neurons after limbic seizures was substantiated by determining Pgp encoding genes (mdr1a, mdr1b) in neurons by real time quantitative RT-PCR. Increased Pgp expression in hippocampal neurons is likely to affect the action of drugs with intraneuronal targets and, in view of recent evidence from other cell types, could be associated with prevention of apoptosis which is involved in neuronal damage developing after seizures such as produced by pilocarpine. (C) 2003 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据