4.6 Article

Internalization of caveolin-1 scaffolding domain facilitated by Antennapedia homeodomain attenuates PAF-induced increase in microvessel permeability

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00667.2003

关键词

endothelial nitric oxide synthase; nitric oxide; caveolae; individually perfused venular microvessel; hydraulic conductivity

资金

  1. NHLBI NIH HHS [R01 HL056237, HL-56237] Funding Source: Medline
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R29HL056237, R01HL056237] Funding Source: NIH RePORTER

向作者/读者索取更多资源

We demonstrated previously that inhibition of endothelial nitric oxide synthase ( NOS), using pharmacological inhibitors, attenuated the ionomycin- and ATP- induced increases in microvessel permeability ( Am J Physiol Heart Circ Physiol 272: H176 - H185, 1997). Recently, the scaffolding domain of caveolin- 1 ( CAV) has been implicated as a negative regulator of endothelial NOS ( eNOS). To examine the role of CAV- eNOS interaction in regulation of permeability in intact microvessels, the effect of internalized CAV on the platelet- activating factor ( PAF)- induced permeability increase was investigated in rat mesenteric venular microvessels. Internalization of CAV was achieved by perfusion of individual vessels using a fusion peptide of CAV with Antennapedia homeodomain ( AP- CAV) and visualized by fluorescence imaging and electron microscopy. Changes in microvessel permeability were evaluated by measuring hydraulic conductivity ( L-p) in individually perfused microvessels. We found that the PAF ( 10 nM)- induced L-p increase was significantly attenuated from 6.0 +/- 0.9 ( n = 7) to 2.0 +/- 0.3 ( n = 5) times control after microvessels were perfused with 10 muM AP- CAV for 2 h. The magnitude of this reduction is comparable with that of the inhibitory effect of N-omega- monomethyl- L- arginine on the PAF- induced L-p increase. In contrast, perfusion with 10 muM AP alone for 2 h modified neither basal L-p nor the vessel response to PAF. These results indicate that CAV plays an important role in regulation of microvessel permeability. The inhibitory action of CAV on permeability increase might be attributed to its direct inactivation of eNOS. In addition, this study established a method for studying protein- protein interaction- induced functional changes in intact microvessels and demonstrated AP as an efficient vector for translocation of peptide across the cell membrane in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据