4.7 Article

Localized RhoA GTPase activity regulates dynamics of endothelial monolayer integrity

期刊

CARDIOVASCULAR RESEARCH
卷 99, 期 3, 页码 471-482

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvt075

关键词

Rho GTPase; FRET microscopy; Cytoskeleton; Endothelial function; Vasoactive agents

资金

  1. Netherlands Heart Foundation [2003T032, 2011T072]
  2. European Union (EVGN contract) [LSHM-2003-503254]
  3. National Institutes of Health [NIH P01 HL60678]

向作者/读者索取更多资源

Endothelial cells (ECs) control vascular permeability by forming a monolayer that is sealed by extracellular junctions. Various mediators modulate the endothelial barrier by acting on junctional protein complexes and the therewith connected F-actin cytoskeleton. Different Rho GTPases participate in this modulation, but their mechanisms are still partly resolved. Here, we aimed to elucidate whether the opening and closure of the endothelial barrier are associated with distinct localized RhoA activities at the subcellular level. Live fluorescence resonance energy transfer (FRET) microscopy revealed spatially distinct RhoA activities associated with different aspects of the regulation of endothelial monolayer integrity. Unstimulated ECs were characterized by hotspots of RhoA activity at their periphery. Thrombin receptor activation in the femoral vein of male wistar rats and in cultured ECs enhanced RhoA activity at membrane protrusions, followed by a more sustained RhoA activity associated with cytoplasmic F-actin filaments, where prolonged RhoA activity coincided with cellular contractility. Unexpectedly, thrombin-induced peripheral RhoA hotspots were not spatially correlated to the formation of large inter-endothelial gaps. Rather, spontaneous RhoA activity at membrane protrusions coincided with the closure of inter-endothelial gaps. Electrical impedance measurements showed that RhoA signalling is essential for this protrusive activity and maintenance of barrier restoration. Spontaneous RhoA activity at membrane protrusions is spatially associated with closure, but not formation of inter-endothelial gaps, whereas RhoA activity at distant contractile filaments contributes to thrombin-induced disruption of junctional integrity. Thus, these data indicate that distinct RhoA activities are associated with disruption and re-annealing of endothelial junctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据